
 September 21, 2012

 Reza Shiftehfar
PhD. Candidate and

Research Assistant in Computer Science
Dept. of Computer Science

University of Illinois at Urbana Champaign
E-mail: sshifte2@illinois.edu

CS423: Operating System Design – Machine Problem 2 (MP2)

Rate-Monotonic CPU Scheduling

2

Announcements:

! MP2 is out.

! Any group with missing person can email me TODAY.

Mp2 Submission :

! Due on 10/3 midnight

! Submit on Compass.

! If that doesn’t work, email me your files: sshifte2@illinois.edu

! Make Snapshot before deadline

! Have to demo your code and answer questions

! Signup sheet will be up next Monday (Sept. 24th)

! First come, first serve for taking the available times

MP2: Rate-Monotonic CPU Scheduling

3

MP2 goals:

! MP1 was focused on getting to know available tools

! MP2 is focused on developing useful Kernel code

! Develop a Rate Monotonic Scheduler

! Develop a bound-based Admission Control for our scheduler

MP2 similarity to MP1:

! Develop scheduler as a Linux Kernel Module (LKM)

! Use Proc File System to communicate with user space application

! Proc/mp2/status

MP2: Rate-Monotonic CPU Scheduling

4

Real-Time Scheduling/System:

! Scheduling/System that can

! guarantee a response time

! within the strict time constraint

Categories:

! Hard Real-time

! Any deviation from deadline results in failure

! E.g. Medical systems such as pace maker, airline navigation system

! Soft Real-time

! Some misses of deadlines are tolerable

! Degrade the system’s Quality of Service

! E.g. Software updating flight plans for commercial airliners

MP2: Rate-Monotonic CPU Scheduling

5

Other categories:

! Firm Real-time

! Stricter than soft real-time

! Only Infrequent deadline misses is tolerable

! Live video-audio system

! Imprecise Real-time

! Each task has 2 part:

! mandatory part (hard real-time),

! optional part (soft real-time)

MP2: Rate-Monotonic CPU Scheduling

6

Real-Time Scheduling Algorithm:

! Static Scheduling

! Scheduler has complete knowledge of tasks:

! Tasks coming

! Deadlines

! computation time

! future releases

! Precedence constraints

! Rate Monotonic (RM) scheduling is the best solution

MP2: Rate-Monotonic CPU Scheduling

7

Real-Time Scheduling Algorithm:

! Dynamic Scheduling

! No complete knowledge of the tasks and their constraints

! Arrival of new tasks can be:

! with unknown duration

! At unknown time

! With unknown constraints

! Scheduler can only schedules the current set of tasks

! There are 2 main types for Dynamic Scheduling:

! Resource Sufficient Environment

! Resource In-Sufficient Environment

MP2: Rate-Monotonic CPU Scheduling

8

Real-Time Scheduling Algorithm:

! Dynamic Scheduling

! Resource Sufficient Environment

! System resources are sufficient to a priori guarantee

! New unknown tasks might arrive at any time

! But always enough resources exists to schedule them

! Earliest Deadline First (EDF) algorithm is the optima solution

! Resource In-Sufficient Environment

! No guarantee on the sufficiency of the existing resources

! We might face rejection/delaying of some of the tasks

! Not suitable for Hard Real-Time environments

MP2: Rate-Monotonic CPU Scheduling

9

Real-Time Scheduling Assumptions:

! Tasks are periodic => constant intervals between requests

! Each task must be completed before the next request for it occurs

! Tasks are independent

! Request for a certain task does not depend on the initiation/completion

of requests for other tasks

! Run-time of each task is constant

MP2: Rate-Monotonic CPU Scheduling

10

Real-Time Scheduling :: Naming Convention:

! Task i => τi

! Request period of Ti

! Execution time of Ci

MP2: Rate-Monotonic CPU Scheduling

11

Real-Time Scheduling :: Rate Monotonic Scheduling (Static Scheduling)

! Assign higher priority to tasks with higher request rate (smaller Ti)

! This is done regardless of their execution time (Ci)

! At any time, pick the task with highest priority and execute it

! Priority of tasks does not change over time

! Least upper bound to processor utilization is 70% for large task sets

! Utilization of more than 70% can still be achieved with suitably selected

tasks

MP2: Rate-Monotonic CPU Scheduling

12

Real-Time Scheduling :: Earliest Deadline First Scheduling (Dynamic

Scheduling)

! Assign task priorities based on their deadline

! Task with earliest deadline has highest priority

! Priority of tasks changes with time

! Capable of reaching full processor utilization

! It is feasible if and only if:

MP2: Rate-Monotonic CPU Scheduling

13

MP2 Overview:

! Goal: Design a Rate-Monotonic Scheduler with Admission Control module

! Scheduler should allow the following:

! Registration

! with desired parameters (PID, Period, Computation Time)

! Yield

! De-Registration

! Scheduler only register a process if it passes through Admission Control

! Admission control checks if the parameters will lead to a feasible

schedule

! Simple Test Application.

MP2: Rate-Monotonic CPU Scheduling

14

MP2 Description:

! Rely on Linux Scheduler to perform context switches

! Reading /proc/mp2/status should give :

! List of registered applications

! Scheduling parameters of each registered application

MP2: Rate-Monotonic CPU Scheduling

15

MP2 Description:

! Test Application:

! Single threaded periodic application

! Factorial application is a good choice

! Register itself with the scheduler through Admission Control

! Specifies its pid, period, processing time

! After registration, read proc filesystem entry to ensure that it is

accepted

! Signal the scheduler that it is ready by sending a Yield message

! Initiate the Real-Time loop

! At the end, de-register itself

MP2: Rate-Monotonic CPU Scheduling

16

MP2 Description:

! Test Application:

void main (void)

{

REGISTER(PID, Period, ProcessTime); //Proc filesystem
list=READ STATUS(); //Proc filesystem: Verify the process was admitted

if (!process in the list) exit 1;

//setup everything needed for real-time loop: t0=gettimeofday() for test.c

YIELD(PID); //Proc filesystem

//this is the real-time loop

while(exist jobs)

{

do_job(); //wakeup_time=t0-gettimeofday() and factorial computation

YIELD(PID); //Proc filesystem

}

UNREGISTER(PID); //Proc filesystem

}

MP2: Rate-Monotonic CPU Scheduling

17

MP2 Description:

! Test Application:

! An application with higher priority will preempt application with lower

priority as soon as it becomes available to run

! Application that has finished its current job will Yield the CPU

! This is done through proc file system entry

! At this time, CPU will schedule the next application with highest

priority

MP2: Rate-Monotonic CPU Scheduling

18

MP2 Description:

! Overview of the process of MP2:

MP2: Rate-Monotonic CPU Scheduling

19

MP2 hints:

! Registration/Yield/De-Registration is through proc file system:

! Use the first character to detect actions:

! For registration: “R, PID, PERIOD, COMPUTATION”

! For YIELD: “Y, PID”

! For DE-Registration: “D, PID”

! You need a dispatching thread:

! Goes through the list of registered processes

! From the list of tasks with READY state, picks the one with highest priority

! This is the task with the shortest period

! Preempts the currently running task (if any)

! Context switches to the chosen task

MP2: Rate-Monotonic CPU Scheduling

20

MP2 hints:

! For Context switching:

! We use Linux Scheduler API for this

! Notice:

! Any task running on the SCHED_FIFO will hold CPU for as long as it needs

! We can trigger a context switch by using SCHED_SETSECHEDULER()

! For the new running task, dispatching thread does this:

wake_up_process():

Set it’s sched_priority = MAX_USER_RT_PRIO-1;

sched_setscheduler(task, SCHED_FIFO, &sparam);

! For the old running task (preempted task), dispatching thread does this:

Set it’s sched_priority=0;

sched_setscheduler(task, SCHED_NORMAL, &sparam);

MP2: Rate-Monotonic CPU Scheduling

21

MP2 hints:

! Admission control Module:

! Checks to see if adding the new task leads to a schedulable set of tasks

! It it is not schedulable, the new task is rejected

! A task set is schedulable if:

! This must hold after adding the new task

! T is the set of all tasks including the new task to be admitted

! C is the processing time of each task

! P is the period of each task

MP2: Rate-Monotonic CPU Scheduling

22

MP2 grading:

MP2: Rate-Monotonic CPU Scheduling

23

Conclusion:

! For your demo:

! Be there at least 10 minute ahead of time

! Bring a laptop

! Have everything prepared before your scheduled time

! In general:

! Allow 2 days to respond to your emails

! Send follow up if you don’t hear from us after 2 days

! Seek help

! Discuss with your group

! Discuss on Piazza

! Come to office hours

! Special thanks to Raoul Rivas from Uni. Of Illinois

Linux Kernel Programming

